Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.807
Filtrar
1.
Genes Dev ; 38(5-6): 273-288, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589034

RESUMO

Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Haploinsuficiência , Glioma/genética , PTEN Fosfo-Hidrolase/genética , Diester Fosfórico Hidrolases/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética
2.
Cells ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391934

RESUMO

Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5-6/grp) and post-CIE (n = 6-8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking.


Assuntos
Etanol , Compostos Orgânicos , Inibidores de Fosfodiesterase , Masculino , Feminino , Ratos , Animais , Etanol/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Ratos Wistar , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Expressão Gênica
3.
J Neuroimmunol ; 387: 578282, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183947

RESUMO

Multiple sclerosis (MS) is a demyelinating disease characterized by infiltration of autoreactive T cells into the central nervous system (CNS). In order to understand how activated, autoreactive T cells are able to cross the blood brain barrier, the unique molecular characteristics of pathogenic T cells need to be more thoroughly examined. In previous work, our laboratory found autotaxin (ATX) to be upregulated by activated autoreactive T cells in the mouse model of MS. ATX is a secreted glycoprotein that promotes T cell chemokinesis and transmigration through catalysis of lysophoshphatidic acid (LPA). ATX is elevated in the serum of MS patients during active disease phases, and we previously found that inhibiting ATX decreases severity of neurological deficits in the mouse model. In this study, ATX expression was found to be lower in MS patient immune cells during rest, but significantly increased during early activation in a manner not seen in healthy controls. The ribosomal binding protein HuR, which stabilizes ATX mRNA, was also increased in MS patients in a similar pattern to that of ATX, suggesting it may be helping regulate ATX levels after activation. The proinflammatory cytokine interleukin-23 (IL-23) was shown to induce prolonged ATX expression in MS patient Th1 and Th17 cells. Finally, through ChIP, re-ChIP analysis, we show that IL-23 may be signaling through pSTAT3/pSTAT4 heterodimers to induce expression of ATX. Taken together, these findings elucidate cell types that may be contributing to elevated serum ATX levels in MS patients and identify potential drivers of sustained expression in encephalitogenic T cells.


Assuntos
Esclerose Múltipla , Animais , Camundongos , Humanos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Citocinas , Interleucina-23 , Lisofosfolipídeos/genética , Lisofosfolipídeos/farmacologia
4.
Arch Virol ; 169(2): 36, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265511

RESUMO

Current therapies for hepatitis B virus (HBV) infection can slow disease progression but cannot cure the infection, as it is difficult to eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The interaction between host factors and cccDNA is essential for their formation, stability, and transcriptional activity. Here, we focused on the regulatory role of the host factor ENPP1 and its interacting transcription factor LMNB1 in HBV replication and transcription to better understand the network of host factors that regulate HBV, which may facilitate the development of new antiviral drugs. Overexpression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) in Huh7 cells decreased HBV pregenomic RNA (pgRNA) and hepatitis B core antigen (HBcAg) expression levels, whereas knockdown of ENPP1 increased them. A series of HBV promoter and mutant plasmids were constructed, and a luciferase reporter assay showed that overexpression of ENPP1 caused inhibition of the HBV promoter and its mutants. A DNA pull-down assay showed that lamin B1 (LMNB1), but not ENPP1, interacts directly with the HBV enhancer II/ basic core promoter (EnhII/BCP). ZDOCK and PyMOL software were used to predict the interaction of ENPP1 with LMNB1. Overexpression of LMNB1 inhibited the activity of the HBV promoter and its mutant. The acetylation levels at the amino acids 111K, 261K, and 483K of LMNB1 were reduced compared to the control, and an LMNB1 acetylation mutant containing 111R, 261Q, 261R, 483Q, and 483R showed increased promoter activity. In summary, ENPP1 together with LMNB1 increased the acetylation level at 111K and 261K, and LMNB1 inhibited the activity of HBV promoter and downregulated the expression of pregenomic RNA and HBcAg. Our follow-up studies will investigate the expression, clinical significance, and relevance of ENPP1 and LMNB1 in HBV patient tissues, explore the effect of LMNB1 on post-transcriptional progression, and examine whether ENPP1 can reduce cccDNA levels in the nucleus.


Assuntos
Vírus da Hepatite B , Lamina Tipo B , Diester Fosfórico Hidrolases , Pirofosfatases , Humanos , Acetilação , Hepatite B , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B/genética , Lamina Tipo B/genética , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , RNA
5.
Am J Physiol Cell Physiol ; 326(3): C843-C849, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223929

RESUMO

The phosphodiesterase enzymes mediate calcium-phosphate deposition in various tissues, although which enzymes are active in bone mineralization is unclear. Using gene array analysis, we found that a member of ecto-nucleotide pyrophosphatase/phosphodiesterase family, ENPP2, was strongly down-regulated with age in stromal stem cells that produce osteoblasts and make bone. This is in keeping with reduced bone formation in older animals. Thus, we hypothesized that ENPP2 is, at least in part, an early mediator of bone formation and thus may reflect reduced bone formation with age. Since ENPP2 has not previously been shown to have a role in osteoblast differentiation, we studied its effect on bone differentiation from stromal stem cells, verified by flow cytometry for stem cell antigens. In these remarkably uniform osteoblast precursors, we did transfection with ENPP2 DsiRNA, scrambled DsiRNA, or no transfection to make cells with normal or greatly reduced ENPP2 and analyzed osteoblast differentiation and mineralization. Osteoblast differentiation down-regulation was shown by alizarin red binding, silver staining, and alkaline phosphatase activity. Differences were confirmed by real-time PCR for alkaline phosphatase (ALPL), osteocalcin (BGLAP), and ENPP2 and by Western Blot for Enpp2. These were decreased, ∼50%, in osteoblasts transfected with ENPP2 DsiRNA compared with cells transfected with a scrambled DsiRNA or not transfected (control) cells. This finding is the first evidence for the role of ENPP2 in osteoblast differentiation and mineralization.NEW & NOTEWORTHY We report the discovery that the ecto-nucleotide pyrophosphatase/phosphodiesterase, ENPP2, is an important regulator of early differentiation of bone-forming osteoblasts.


Assuntos
Calcinose , Osteogênese , Pirofosfatases , Animais , Fosfatase Alcalina/genética , Diferenciação Celular , Diester Fosfórico Hidrolases/genética
6.
Biochemistry ; 63(4): 523-532, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38264987

RESUMO

Globin-coupled sensors constitute an important family of heme-based gas sensors, an emerging class of heme proteins. In this study, we have identified and characterized a globin-coupled sensor phosphodiesterase containing an HD-GYP domain (GCS-HD-GYP) from the human pathogen Vibrio fluvialis, which is an emerging foodborne pathogen of increasing public health concern. The amino acid sequence encoded by the AL536_01530 gene from V. fluvialis indicated the presence of an N-terminal globin domain and a C-terminal HD-GYP domain, with HD-GYP domains shown previously to display phosphodiesterase activity toward bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates numerous important physiological functions in bacteria, including in bacterial pathogens. Optical absorption spectral properties of GCS-HD-GYP were found to be similar to those of myoglobin and hemoglobin and of other bacterial globin-coupled sensors. The binding of O2 to the Fe(II) heme iron complex of GCS-HD-GYP promoted the catalysis of the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas CO and NO binding did not enhance the catalysis, indicating a strict discrimination of these gaseous ligands. These results shed new light on the molecular mechanism of gas-selective catalytic regulation by globin-coupled sensors, with these advances apt to lead to a better understanding of the family of globin-coupled sensors, a still growing family of heme-based gas sensors. In addition, given the importance of c-di-GMP in infection and virulence, our results suggested that GCS-HD-GYP could play an important role in the ability of V. fluvialis to sense O2 and NO in the context of host-pathogen interactions.


Assuntos
Globinas , Diester Fosfórico Hidrolases , Vibrio , Humanos , Diester Fosfórico Hidrolases/genética , Globinas/genética , Proteínas de Bactérias/química , Catálise , GMP Cíclico/metabolismo , Heme/química
7.
Proc Natl Acad Sci U S A ; 121(5): e2312691121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38277437

RESUMO

Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions are less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronaviruses belonging to different genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (HCoV-OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of rotavirus A was acquired independently from rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.


Assuntos
Dietilestilbestrol/análogos & derivados , Endorribonucleases , Coronavírus da Síndrome Respiratória do Oriente Médio , Diester Fosfórico Hidrolases , Rotavirus , Animais , Humanos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Filogenia , Mamíferos/metabolismo
8.
J Biol Chem ; 300(2): 105659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237678

RESUMO

Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.


Assuntos
Proteínas de Bactérias , Pseudomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas/enzimologia
9.
Microb Pathog ; 188: 106545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244636

RESUMO

Edwardsiella piscicida is a severe fish pathogen with wide host range, causing the huge economic losses in the aquaculture industry. Cyclic adenosine monophosphate (cAMP) as an important second messenger regulates the physiological and behavioral responses to environmental cues in eukaryotic and prokaryotic. The intracellular level of cAMP for effective activity is tightly controlled by the synthesis of adenylate cyclase, excretion and degradation of phosphodiesterase. In this study, we identified and characterized a class III cAMP phosphodiesterase, named as CpdA, in the E. piscicida. To investigate the role of CpdA in the physiology and pathogenicity, we constructed the in-frame deletion mutant of cpdA of E. piscicida, TX01ΔcpdA. The results showed that TX01ΔcpdA accumulated the higher intracellular cAMP concentration than TX01, indicating that CpdA exerted the hydrolysis of cAMP. In addition, compared to the TX01, the TX01ΔcpdA slowed growth rate, diminished biofilm formation and lost motility. More importantly, pathogenicity analysis confirmed that TX01ΔcpdA significantly impaired the ability of invading the epithelial cells, reproduction in macrophages, tissues dissemination and lethality for healthy tilapias. The most of lost properties of TX01ΔcpdA were restored partially or fully by the introduction of cpdA gene. These results suggest that cpdA is required for regulation of the physiology and virulence of E. piscicida.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Virulência , Diester Fosfórico Hidrolases/genética , AMP Cíclico/metabolismo , Biofilmes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Annu Rev Pathol ; 19: 507-540, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37871131

RESUMO

The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.


Assuntos
Diester Fosfórico Hidrolases , Calcificação Vascular , Adulto , Humanos , Pessoa de Meia-Idade , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo
11.
Br J Haematol ; 204(2): 395-396, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37932156

RESUMO

The clinical problem of a non-healing fistula in ano in a child affected with poikiloderma with neutropenia (PN) was the stimulus for an innovative study by Parajuli et al. that sheds light on the pathological mechanisms in this disease. Multiparametric analyses of the patient's blood mononuclear cells by cell culture, flow cytometry and multiplex cytokine assay suggested a block of monocyte differentiation. Monocyte transcriptome profiling revealed a signature consistent with the haematological picture and the clinical presentation. Commentary on: Parajuli et al. Defective monocyte plasticity and altered cAMP pathway characterize USB1-mutated poikiloderma with neutropenia Clericuzio type. Br J Haematol 2024;204:683-693.


Assuntos
Neutropenia , Anormalidades da Pele , Criança , Humanos , Anormalidades da Pele/metabolismo , Anormalidades da Pele/patologia , Neutropenia/patologia , Monócitos/patologia , Mutação , Diester Fosfórico Hidrolases/genética
12.
Mol Microbiol ; 121(1): 1-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37927230

RESUMO

The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase and degraded by c-di-GMP-specific phosphodiesterase. The genome of Pseudomonas putida contains dozens of genes encoding diguanylate cyclase/phosphodiesterase, but the phenotypical-genotypical correlation and functional mechanism of these genes are largely unknown. Herein, we characterize the function and mechanism of a P. putida phosphodiesterase named DibA. DibA consists of a PAS domain, a GGDEF domain, and an EAL domain. The EAL domain is active and confers DibA phosphodiesterase activity. The GGDEF domain is inactive, but it promotes the phosphodiesterase activity of the EAL domain via binding GTP. Regarding phenotypic regulation, DibA modulates the cell surface adhesin LapA level in a c-di-GMP receptor LapD-dependent manner, thereby inhibiting biofilm formation. Moreover, DibA interacts and colocalizes with LapD in the cell membrane, and the interaction between DibA and LapD promotes the PDE activity of DibA. Besides, except for interacting with DibA and LapD itself, LapD is found to interact with 11 different potential diguanylate cyclases/phosphodiesterases in P. putida, including the conserved phosphodiesterase BifA. Overall, our findings demonstrate the functional mechanism by which DibA regulates biofilm formation and expand the understanding of the LapD-mediated c-di-GMP signaling network in P. putida.


Assuntos
Proteínas de Escherichia coli , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , GMP Cíclico/metabolismo , Biofilmes , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
13.
Br J Haematol ; 204(2): 683-693, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779259

RESUMO

Poikiloderma with neutropenia (PN) Clericuzio type (OMIM #604173) is a rare disease with areas of skin hyper- and hypopigmentation caused by biallelic USB1 variants. The current study was spurred by poor healing of a perianal tear wound in one affected child homozygous for c.266-1G>A (p.E90Sfster8) mutation, from a family reported previously. Treatment with G-CSF/CSF3 or GM-CSF/CSF2 transiently increased neutrophil/monocytes count with no effect on wound healing. Analysis of peripheral blood revealed a lack of non-classical (CD14+/- CD16+ ) monocytes, associated with a systemic inflammatory cytokine profile, in the two affected brothers. Importantly, despite normal expression of cognate receptors, monocytes from PN patients did not respond to M-CSF or IL-34 in vitro, as determined by cytokine secretion or CD16 expression. RNAseq of monocytes showed 293 differentially expressed genes, including significant downregulation of GATA2, AKAP6 and PDE4DIP that are associated with leucocyte differentiation and cyclic adenosine monophosphate (cAMP) signalling. Notably, the plasma cAMP was significantly low in the PN patients. Our study revealed a novel association of PN with a lack of non-classical monocyte population. The defects in monocyte plasticity may contribute to disease manifestations in PN and a defective cAMP signalling may be the primary effect of the splicing errors caused by USB1 mutation.


Assuntos
Neutropenia , Anormalidades da Pele , Masculino , Criança , Humanos , Monócitos/metabolismo , Anormalidades da Pele/genética , Anormalidades da Pele/metabolismo , Neutropenia/genética , Citocinas , Receptores de IgG , Diester Fosfórico Hidrolases/genética
15.
J Anat ; 244(2): 333-342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814911

RESUMO

During tibial tuberosity growth, superficial and deep portions can be observed; however, the deep portion is not observed after the growth period, as it develops into bone tissues. Calcification in vivo is known to be constitutively suppressed by ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) but promoted by tissue-nonspecific alkaline phosphatase (TNAP). FGF23 promotes calcification of enthesis. Gene expression of FGF23 increased rapidly at 13W in this study. Therefore, the tibial tuberosity is speculated to develop via Enpp1 downregulation and Tnap upregulation; however, the understanding of these processes remains unclear. Hence, in the present study, we aimed to explore the age-related structural changes and underlying gene expression changes in the tibial tuberosity of rats. Male Wistar rats were divided into three groups (3-, 7-, and 13-week-old; eight each). The tibial tuberosity superficial and deep portions were clearly observed in 3- and 7-week-old rats, but the presence of the deep portion was not confirmed in 13-week-old rats. The extracellular matrix of hypertrophic chondrocytes was calcified. Furthermore, the Enpp1 expression was the highest in 3-week-old rats and decreased with growth. The TNAP expression did not differ significantly among the groups. The deep portion area was significantly lower in 3-week-old rats than in 7-week-old rats. Generally, the extracellular matrix of the immature chondrocytes is not calcified. Therefore, we speculated that the cartilaginous tibial tuberosity calcifies and ossifies with growth. The Enpp1 expression decreased with growth, whereas the Tnap expression remained unchanged. Thus, we surmise that the tibial tuberosity calcifies with growth and that this process involves Enpp1 downregulation and FGF23 upregulation. As Osgood-Schlatter disease is closely related to the calcification of the tibial tuberosity, these findings may help clarify the pathogenesis of this disease.


Assuntos
Diester Fosfórico Hidrolases , Pirofosfatases , Animais , Masculino , Ratos , Regulação para Baixo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Ratos Wistar , Regulação para Cima
16.
mBio ; 15(2): e0305623, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132724

RESUMO

Apicomplexa encompasses a large number of intracellular parasites infecting a wide range of animals. Cyclic nucleotide signaling is crucial for a variety of apicomplexan life stages and cellular processes. The cyclases and kinases that synthesize and respond to cyclic nucleotides (i.e., 3',5'-cyclic guanosine monophosphate and 3',5'-cyclic adenosine monophosphate) are highly conserved and essential throughout the parasite phylum. Growing evidence indicates that phosphodiesterases (PDEs) are also critical for regulating cyclic nucleotide signaling via cyclic nucleotide hydrolysis. Here, we discuss recent advances in apicomplexan PDE biology and opportunities for therapeutic interventions, with special emphasis on the major human apicomplexan parasite genera Plasmodium, Toxoplasma, Cryptosporidium, and Babesia. In particular, we show a highly flexible repertoire of apicomplexan PDEs associated with a wide range of cellular requirements across parasites and lifecycle stages. Despite this phylogenetic diversity, cellular requirements of apicomplexan PDEs for motility, host cell egress, or invasion are conserved. However, the molecular wiring of associated PDEs is extremely malleable suggesting that PDE diversity and redundancy are key for the optimization of cyclic nucleotide turnover to respond to the various environments encountered by each parasite and life stage. Understanding how apicomplexan PDEs are regulated and integrating multiple signaling systems into a unified response represent an untapped avenue for future exploration.


Assuntos
Criptosporidiose , Cryptosporidium , Dietilestilbestrol/análogos & derivados , Animais , Humanos , Diester Fosfórico Hidrolases/genética , Nucleotídeos Cíclicos , Inibidores de Fosfodiesterase/uso terapêutico , Filogenia , GMP Cíclico , 3',5'-AMP Cíclico Fosfodiesterases
17.
Sci Adv ; 9(49): eadl2108, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055822

RESUMO

The catalytic cycle of topoisomerase 2 (TOP2) enzymes proceeds via a transient DNA double-strand break (DSB) intermediate termed the TOP2 cleavage complex (TOP2cc), in which the TOP2 protein is covalently bound to DNA. Anticancer agents such as etoposide operate by stabilizing TOP2ccs, ultimately generating genotoxic TOP2-DNA protein cross-links that require processing and repair. Here, we identify RAD54 like 2 (RAD54L2) as a factor promoting TOP2cc resolution. We demonstrate that RAD54L2 acts through a novel mechanism together with zinc finger protein associated with tyrosyl-DNA phosphodiesterase 2 (TDP2) and TOP2 (ZATT/ZNF451) and independent of TDP2. Our work suggests a model wherein RAD54L2 recognizes sumoylated TOP2 and, using its ATPase activity, promotes TOP2cc resolution and prevents DSB exposure. These findings suggest RAD54L2-mediated TOP2cc resolution as a potential mechanism for cancer therapy resistance and highlight RAD54L2 as an attractive candidate for drug discovery.


Assuntos
Adutos de DNA , Proteínas de Ligação a DNA , Humanos , Adutos de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diester Fosfórico Hidrolases/genética , DNA Topoisomerases Tipo II/genética , DNA/genética , Instabilidade Genômica , DNA Helicases/genética
18.
Proc Natl Acad Sci U S A ; 120(52): e2313693120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117852

RESUMO

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer stimulator of interferon genes (STING) pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single-cell RNA-seq, we show that ENPP1 in both cancer and normal tissues drives primary breast tumor growth and metastasis by dampening extracellular 2'3'-cyclic-GMP-AMP (cGAMP)-STING-mediated antitumoral immunity. ENPP1 loss-of-function in both cancer cells and normal tissues slowed primary tumor growth and abolished metastasis. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied ENPP1 knockout in a STING-dependent manner, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Finally, ENPP1 expression in breast tumors deterministically predicated whether patients would remain free of distant metastasis after pembrolizumab (anti-PD-1) treatment followed by surgery. Altogether, ENPP1 blockade represents a strategy to exploit cancer-produced extracellular cGAMP for controlled local activation of STING and is therefore a promising therapeutic approach against breast cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo
19.
Cells ; 12(24)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132157

RESUMO

Recently, a Y727C variant in the dual-specific 3',5'-cyclic nucleotide phosphodiesterase 11A (PDE11A-Y727C) was linked to increased sleep quality and reduced myopia risk in humans. Given the well-established role that the PDE11 substrates cAMP and cGMP play in eye physiology and sleep, we determined if (1) PDE11A protein is expressed in the retina or other eye segments in mice, (2) PDE11A-Y7272C affects catalytic activity and/or subcellular compartmentalization more so than the nearby suicide-associated PDE11A-M878V variant, and (3) Pde11a deletion alters eye growth or sleep quality in male and female mice. Western blots show distinct protein expression of PDE11A4, but not PDE11A1-3, in eyes of Pde11a WT, but not KO mice, that vary by eye segment and age. In HT22 and COS-1 cells, PDE11A4-Y727C reduces PDE11A4 catalytic activity far more than PDE11A4-M878V, with both variants reducing PDE11A4-cAMP more so than PDE11A4-cGMP activity. Despite this, Pde11a deletion does not alter age-related changes in retinal or lens thickness or axial length, nor vitreous or anterior chamber depth. Further, Pde11a deletion only minimally changes refractive error and sleep quality. That said, both variants also dramatically alter the subcellular compartmentalization of human and mouse PDE11A4, an effect occurring independently of dephosphorylating PDE11A4-S117/S124 or phosphorylating PDE11A4-S162. Rather, re-compartmentalization of PDE11A4-Y727C is due to the loss of the tyrosine changing how PDE11A4 is packaged/repackaged via the trans-Golgi network. Therefore, the protective impact of the Y727C variant may reflect a gain-of-function (e.g., PDE11A4 displacing another PDE) that warrants further investigation in the context of reversing/preventing sleep disturbances or myopia.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases , Miopia , Humanos , Masculino , Feminino , Animais , Camundongos , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Qualidade do Sono , Western Blotting
20.
J Biol Chem ; 299(12): 105437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944617

RESUMO

The zwitterions phosphorylcholine (PC) and phosphoethanolamine (PE) are often found esterified to certain sugars in polysaccharides and glycoconjugates in a wide range of biological species. One such modification involves PC attachment to the 6-carbon of N-acetylglucosamine (GlcNAc-6-PC) in N-glycans and glycosphingolipids (GSLs) of parasitic nematodes, a modification that helps the parasite evade host immunity. Knowledge of enzymes involved in the synthesis and degradation of PC and PE modifications is limited. More detailed studies on such enzymes would contribute to a better understanding of the function of PC modifications and have potential application in the structural analysis of zwitterion-modified glycans. In this study, we used functional metagenomic screening to identify phosphodiesterases encoded in a human fecal DNA fosmid library that remove PC from GlcNAc-6-PC. A novel bacterial phosphodiesterase was identified and biochemically characterized. This enzyme (termed GlcNAc-PDase) shows remarkable substrate preference for GlcNAc-6-PC and GlcNAc-6-PE, with little or no activity on other zwitterion-modified hexoses. The identified GlcNAc-PDase protein sequence is a member of the large endonuclease/exonuclease/phosphatase superfamily where it defines a distinct subfamily of related sequences of previously unknown function, mostly from Clostridium bacteria species. Finally, we demonstrate use of GlcNAc-PDase to confirm the presence of GlcNAc-6-PC in N-glycans and GSLs of the parasitic nematode Brugia malayi in a glycoanalytical workflow.


Assuntos
Diester Fosfórico Hidrolases , Açúcares , Humanos , Diester Fosfórico Hidrolases/genética , Carboidratos , Glicoconjugados/química , Polissacarídeos/metabolismo , Acetilglucosamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...